Note: (α-β) indicates alphabetical ordering
Testing Noise Assumptions of Learning Algorithms
(α-β) , Adam R. Klivans, Konstantinos Stavropoulos, Arsen Vasilyan
Tractable Agreement Protocols
(α-β) Natalie Collina, , Varun Gupta, Aaron Roth
Pluralistic Alignment Workshop, NeurIPS 2024
Conformal Language Model Reasoning with Coherent Factuality
Maxon Rubin-Toles, Maya Gambhir, Keshav Ramji, Aaron Roth,
Statistical Foundations of LLMs and Foundation Models Workshop, NeurIPS 2024
Progressive Distillation Induces an Implicit Curriculum
Abhishek Panigrahy, Bingbin Liu, Sadhika Malladi, Andrej Risteski,
Mechanistic Interpretability Workshop, ICML 2024
Theoretical Foundations of Foundation Models (T2FM) Workshop, ICML 2024
Mathematics of Modern Machine Learning (M3L) Workshop, NeurIPS 2024
Logicbreaks: A Framework for Understanding Subversion of Rule-based Inference
Anton Xue, Avishree Khare, Rajeev Alur, , Eric Wong
New Frontiers in Adversarial Machine Learning (AdvML-Frontiers) Workshop, NeurIPS 2024
Safe & Trustworthy Agents (SATA) Workshop, NeurIPS 2024
Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024
The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains
Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edelman, Eran Malach,
NeurIPS 2024
Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
(α-β) , Abhishek Shetty, Konstantinos Stavropoulos, Arsen Vasilyan
Spotlight presentation, NeurIPS 2024
Complexity Matters: Feature Learning in the Presence of Spurious Correlations
GuanWen Qiu, Da Kuang,
ICML 2024
Mathematics of Modern Machine Learning (M3L) Workshop, NeurIPS 2023
Stochastic Bandits with ReLU Neural Networks
Kan Xu, Hamsa Bastani, , Osbert Bastani
ICML 2024
Adversarial Resilience in Sequential Prediction via Abstention
(α-β) , Steve Hanneke, Shay Moran, Abhishek Shetty
NeurIPS 2023
Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck
(α-β) Benjamin L. Edelman, , Sham M. Kakade, Eran Malach, Cyril Zhang
Spotlight presentation, NeurIPS 2023
Exposing Attention Glitches with Flip-Flop Language Modeling
Bingbin Liu, Jordan T. Ash, , Akshay Krishnamurthy, Cyril Zhang
Spotlight presentation, NeurIPS 2023
Challenges of Deploying Generative AI Workshop, ICML 2023
Knowledge and Logical Reasoning in the Era of Data-driven Learning Workshop, ICML 2023
Learning Narrow One-Hidden-Layer ReLU Networks
(α-β) Sitan Chen, Zehao Dou, , Adam R. Klivans, Raghu Meka
COLT 2023
Transformers Learn Shortcuts to Automata
Bingbin Liu, Jordan T. Ash, , Akshay Krishnamurthy, Cyril Zhang
Notable top-5% paper, ICLR 2023
Recurrent Convolutional Neural Networks Learn Succinct Learning Algorithms
(α-β) , Sham M. Kakade, Adam T. Kalai, Cyril Zhang
NeurIPS 2022
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
(α-β) Boaz Barak, Benjamin L. Edelman, , Sham M. Kakade, Eran Malach, Cyril Zhang
NeurIPS 2022
Inductive Biases and Variable Creation in Self-Attention Mechanisms
(α-β) Benjamin L. Edelman, , Sham M. Kakade, Cyril Zhang
ICML 2022
Understanding Contrastive Learning Requires Incorporating Inductive Biases
Nikunj Saunshi, Jordan T. Ash, , Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham M. Kakade, Akshay Krishnamurthy
ICML 2022
Anti-Concentrated Confidence Bonuses For Scalable Exploration
Jordan T. Ash, Cyril Zhang, , Akshay Krishnamurthy, Sham M. Kakade
ICLR 2022
Investigating the Role of Negatives in Contrastive Representation Learning
Jordan T. Ash, , Akshay Krishnamurthy, Dipendra Misra
AISTATS 2022
Gone Fishing: Neural Active Learning with Fisher Embeddings
Jordan T. Ash, , Akshay Krishnamurthy, Sham M. Kakade
NeurIPS 2021
Acceleration via Fractal Learning Rate Schedules
(α-β) Naman Agarwal, , Cyril Zhang
ICML 2021
Statistical Estimation from Dependent Data
Anthimos-Vardis Kandiros, Yuval Dagan, Nishanth Dikkala, , Constantinos Daskalakis
ICML 2021
Tight Hardness Results for Learning One-Layer ReLU Networks
(α-β) , Adam R. Klivans, Pasin Manurangsi, Daniel Reichman
ITCS 2021
From Boltzmann Machines to Neural Networks and Back Again
(α-β) , Adam R. Klivans, Frederic Koehler
NeurIPS 2020
Statistical-Query Lower Bounds via Functional Gradients
(α-β) , Aravind Gollakota, Adam R. Klivans
NeurIPS 2020
Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient Descent
(α-β) , Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, Adam R. Klivans
ICML 2020
Efficiently Learning Adversarially Robust Halfspaces with Noise
Omar Montasser, , Ilias Diakonikolas, Nathan Srebro
ICML 2020
Learning Mixtures of Graphs from Epidemic Cascades
Jessica Hoffmann, Soumya Basu, , Constantine Caramanis
ICML 2020
Approximation Schemes for ReLU Regression
(α-β) Ilias Diakonikolas, , Sushrut Karmalkar, Adam R. Klivans, Mahdi Soltanolkotabi
COLT 2020
Learning Ising and Potts Models with Latent Variables
AISTATS 2020
Time/Accuracy Trade-offs for Learning a ReLU with respect to Gaussian Marginals
(α-β) , Sushrut Karmalkar, Adam R. Klivans
Spotlight presentation, NeurIPS 2019
Learning Ising Models with Independent Failures
(α-β) , Daniel Kane, Adam R. Klivans
COLT 2019
Learning Neural Networks with Two Nonlinear Layers in Polynomial Time
(α-β) , Adam R. Klivans
COLT 2019
Deep Learning: Bridging Theory and Practice Workshop, NeurIPS 2017
Learning One Convolutional Layer with Overlapping Patches
(α-β) , Adam R. Klivans, Raghu Meka
Oral presentation, ICML 2018
Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks
(α-β) , Adam R. Klivans
NeurIPS 2017
Reliably Learning the ReLU in Polynomial Time
(α-β) , Varun Kanade, Adam R. Klivans, Justin Thaler
COLT 2017
Oral presentation, Optimization for Machine Learning (OPT-ML) Workshop, NeurIPS 2016
Encoding Structural Symmetry is Key for Length Generalization in Arithmetic Tasks
Mahdi Sabbaghi, George J. Pappas, Hamed Hassani,
Recovering the Lowest Layer of Deep Networks with High Threshold Activations
(α-β) , Rina Panigrahy
Quantifying Perceptual Distortion of Adversarial Examples
Matthew Jordan, Naren Manoj, , Alexandros Dimakis
Improved Learning of One-hidden-layer Convolutional Neural Networks with Overlaps
(α-β) Simon Du,